

Accurate dosing or weight measurement with continuous throughput.

Exceptional reliability.

Features

- High accuracy
- Hygienic design
- Minimum maintenance
- Broad capacity range

For weighing a given product stream, or dosing at a specific throughput

Wide variety of applications

The MSDI loss-in-weight scale allows for weighing a given product stream, or dosing at a specified throughput, of non-free-flowing products such as flour, bran, semolina, milk powder, salt, crystal sugar, etc. On the one hand, the loss-inweight scale can be used as a mass flowmeter, to measure the weight and the throughput of a given product stream. On the other hand, applied as a mass flow controller, it enables a freely selectable throughput to be accurately achieved. Among other applications, it can be used for blending different products, or for supplying a specific amount of product to a subsequent process. MSDI covers a wide range of capacities, from 0.2 to 90 m³/h.

Reliable and accurate

- The MEAG universal control system with optimized algorithms guarantees repeatable dosing results.
- The three-point suspension of the weighing hopper ensures high stability.
- Three high-precision load cells.

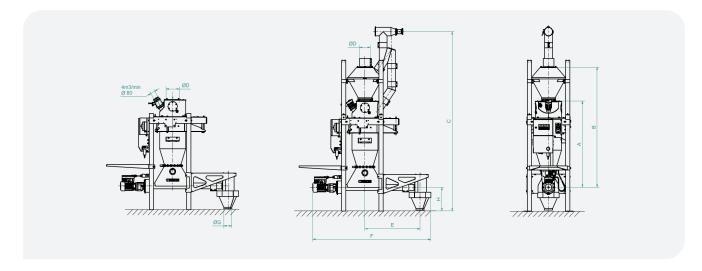
Ideal design for High sanitation

The optimal design of all components in contact with the product prevent dust traps, a crucial factor for ensuring a high product purity.

Low maintenance requirement

- Since the MSDI loss-in-weight scale does not have any lubrication points, the maintenance requirement is reduced.
- The easy-to-exchange system components can be guickly set up as required.
- The high grade seals contribute to maximizing the life cycle of the bearings.

Dosing uniformity


- The optimized product flow inside the scale additionally enhances the uniformity of proportioning.
- The equipment of the MSDI loss-in-weight scale includes a frequency-controlled drive, which ensures the optimal control of the throughput and minimizes the wear of the bearings.

The portfolio offers the best size for the desired throughput.

	Bakery flour, bulk density > 0.5 t/m ³		Biscuit flour, bulk density > 0.4 t/m ³		Semolina, bulk density > 0.6 t/m³		Bran, bulk density > 0.22 t/m ³		Feed meal bulk density > 0.45 t/m³	
Model	Throughput** as		Throughput** as		Throughput** as		Throughput** as		Throughput** as	
	Flow controller	Flowmeter	Flow controller	Flowmeter	Flow controller	Flowmeter	Flow controller	Flowmeter	Flow controller	Flowmeter
	t/h	t/h	t/h	t/h	t/h	t/h	t/h	t/h	t/h	t/h
MSDI- 100/100	0.1 – 3.0	0.1 – 2.2	0.1 – 2.4	0.1 – 1.8	0.12 – 3.6	0.12 – 2.7			0.1 – 2.7	0.1 – 2.0
MSDI- 100/125	0.15 – 4.5	0.15 – 3.3	0.15 – 3.6	0.15 – 2.7	0.18 – 5.5	0.18 – 4.0			0.15 – 4.0	0.15 – 3.0
MSDI- 140/160	0.5 – 15.0	0.5 – 11.0	0.4 – 12.0	0.4 – 8.8	0.6 – 18.0	0.6 – 13.3	0.22 - 6.6	0.22 – 4.8	0.5 – 13.5	0.5 – 10.0
MSDI- 280/200	1.0 – 30.0	1.0 – 30.0	0.8 – 24.0	0.8 – 24.0	1.2 – 36.0	1.2 – 36.0	0.44 – 13.2	0.44 – 13.2	1.0 – 27.0	0.8 – 27.0
MSDI- 350/250	1.5 – 45.0	1.5 – 45.0	1.2 – 36.0	1.2 – 36.0	1.8 – 54.0	1.8 – 54.0	0.66 – 19.8	0.66 – 19.8	1.5 – 40.0	1.2 – 40.0

 $^{^{\}star\star}$ Throughput giving consideration to the bulk density with vector-controlled frequency converter.

Dimensions

Model		Α	В	С	D	E	F	G	н	Compr. air m³/h*	Weight kg	Volume m ³
MSDI- 100/100	R	1588	_	_	250	1070	2397	150	440	0.5	383	4
	М	_	2203	3309	200	1070	2397	150	440	1.3	480	4
MSDI- 100/125	R	1519	_	_	250	1070	2542	150	440	0.5	408	4
	М	_	2134	3240	200	1070	2542	150	440	1.3	505	4
MSDI- 140/160	R	1583	_	_	250	1270	2767	150	619	0.6	424	4
	М	_	2198	3483	200	1270	2767	150	619	1.3	522	4
MSDI- 280/200	R	2016	_	_	300	1310	2800	250	624	1.2	466	4
	М	_	2778	4070	200	1310	2800	250	624	2.6	547	4
MSDI- 350/250	R	2299	_	_	300	1290	2898	300	281	1.2	483	4
	М	_	3570	4650	250	1290	2898	300	281	2.6	565	4

 $^{^{\}star}$ Based on cleaned and dry wheat (H $_2$ O < 14 %) with a loose bulk density of 0.75 t/m 3 , R = Controller, M = Meter

Bühler AG

CH-9240 Uzwil Switzerland T +41 71 955 11 11 F +41 71 955 66 11

digital.sense@buhlergroup.combuhlergroup.com